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I N  AN INCOMl'Ef3SSIBL;E TURBIEENT B O U N D M  LAYER 

By Morris W. Rubesin 

An analysis is performed to determine the effects on the rates of 
convective heat transfer produced by variations of the surface tempera- 
ture with distance along a flat plate. The analysis is confined to the 
case of a low-Elpeed turbulent boundary layer on a flat plate oriented 
parallel to the freedtream velocity. All the physical properties of 
the fluid are considered to be constant. The temperature distribution 
in the boundary layer and the local heat-%ransfer rate at the surface 
are obtained in the form of definite integrals, with the integrands con- 
taining the prescribed surface-temperature variation or its derivative 
with respect to the distance along the plate. Numerical evaluation of 
these integrals permits application of the results to any type of sur- 
face temperature d-:stribution that m y  occur physically. 

The basic solution of this analysis, one applying to a stepwise- 
discontinuous surface temperature in which the temperature is constant 
on either side of the discontinuity, is correlated with a set of exist- 
ing experimental data. 
of a stepwise-disconti- ~ ~ ~ ~ ~ - e m ~ e r a - t ~ ~ - ~ p ~ ~ r  a plug-type 

This work is extended to show that the existence 

m e t e r _ - ~ - k ~ _ _ ~ h ~ ~ - r e s ~ ~ t ~ - - o k ~ a ~ ~ d . .  from_ this tae inst 

For convenience, algebraic equations are presented for the surface 
temperature, the surface temperature gradient with respect to the dis- 
tance along the plate, and, the local convective heat-transfer rate. 
These equations are in the form of power series, with positive exponents, 
in terms of the distance along the plate. When one of the quantities, 
surface temperature or local heat transfer, is specified and the coef- 
ficients and exponents of the prticular power series are evaluated, 
the other quantities, together with the total heat-transfer rate, can 
be determined directly by substituting these coefficients and exponents 
into the respective power series, 



2 NACA TN 2345 

INTROlWCTI ON 

Several experiments and analyses have been performed which indicate 
that a variable surface-temperature distribution can produce either a 
marked increase or decrease in the local and average convective heat- 
transfer rates to or from a surface. 
ysis is described in which the effects on the convective heat-transfer 
rates produced by a stepwisediscontinuom surface temperature on a flat 
plate were determined. These effects were aetermined from solutions of 
the integral form of the boundary-layer-energy equations for both l a m i -  
nar and turbulent boundary layers. Further, these solutions were 
restricted to the assumption of constant physical properties for the 
fluids. It was found that extremely large effects occur in the region 
directly downstream of the discontinuity in the surface temperature. 

In reference 1 an approximate anal- 

In reference 2, there is described an analysis in which the analy t -  
ical solution of the boundary-layer equations was determined for the 
compressible, laminar boundary layer on a flat plate. The surface tem- 
perature in this analysis was represented by an arbitrary polynomial in 
terms of distance along the plate. It was found that even a continuous 
surface-temperature variation could produce large effects on the convec- 
tive heat transfer in the laminar boundary layer. 

In reference 3, there is described an analysis in which the solu- 
tion of the boundary-layer energy equation was determined for laminar 
flow on the surface of a wedge. When the velocity distribution in the 
boundary layer was assumed to be linear with the distance normal to the 
surface and all the physical properties of the fluid were assumed to be 
constant, a solution of the energy equation was obtained analytically 
for a stepwisediscontinuous surface temperature. For the case of a 
flat plate this solution gives results in agreement with the results of 
the solution for the lamidr boundary layer in reference 1. This solu- 
tion (reference 3) for the case of a stepwise-discontinuous surface tem- 
perature was then extended to an arbitrary surface temperature through 
the employment of an integral solution similar in idea to that of 
Duhamel (reference 4). Recently another analysis (reference 5 )  was per- 
formed determining the heat transfer from a body on which the velocity 
at the edge of the boundary layer and the surface temperature vary. 
This analysis required the same limiting assumptions as in reference 3 
although the mathematical details were somewhat different. Again it was 
found from these analyses that the surface-temperature variation influ- 
enced the convective heat-trans fer rates considerably . 

It has also been shown experimentally that a variation in the sur- 
face temperature with distance along the surface produces large effects 
on the convective heat transfer. In reference 6, an experiment is 
described in which the effect of unheated starting sections on the aver- 
age heat transfer was determined from a cylindrical probe having a 
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constant surface temperature i n  the heated region and w i t h  i ts  axis par- 
a l l e l  t o  the free-stream velocity. It was found that the length of the- 
unheated start ingvsection does influence the average rate of heat trans- 
fe r  on the remainder of the probe. 

In  the experiment described in  reference 7, it w a s  found that val- 
ues of the local heat-transfer rates measured on a cone where severe 
surface-temperature variations occurred deviated f r o m  predictions based 
on theories i n  which the surface temperature i s  assumed constant. These 
results were obtained f o r  both laminar and turbulent boundary layers. 

Recently an experiment w a s  performed t o  determine the effect  of a 
stepwise-discantinuous surface temperature on the l o c a l  heat transfer 
i n  the turbulent boundary layer of a f la t  plate, reference 8.l These 
data show a marked effect on the l o c a l  heat transfer, and w i l l  be cor- 
related w i t h  the results of the analysis of this paper. 

A quantitative determination, either experimental or analytical, 
i s  necessary t o  reveal the effect of a continuous variation of surface 
temperature with distance on the convective heat transfer i n  the turbu- 
lent  boundary layer. 
make this determination i n  an approxinate ana ly t ica l  manner subject t o  
the limiting assurptions of a flat  plate, of constant physical proper- 
t i e s  of the fluid, and of no frictional dissipation of energy within 
the boundary layer. 

It i s  the purpose of this paper, therefore, t o  

SYMBOLS 

an 

A 

An 

B 

C 

C 
P 
F 

coefficients of power series, OF per foot- 

symbol defined by equation (22), foot 
39-l-281 

coefficients of power series, dimensionless 

symbol defined by equation '(42), foot 

coefficient defined by equation (23), dimemionless 

specific heat a t  constant pressure, Btu per slug, ?E' 

coefficient i n  equation (37), dirnensiaess 

-1/35 

The author wishes t o  acknowledge his indebtedness t o  M r .  Steve Scesa 
and the Department of Mechanical Engineering, University of California, 
Berkeley, f o r  their  kind permission t o  use hitherto unpublished data 
in  this report. 
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G 

h 

h* 

m 

n 

NU 

P 

Pr 

9 

Q 
Re 

S 

t 

U 

U 
0 

U 

V 

W 

coefficient in equation (37) , dimensionless 
local heat--transfer coefficient, Btu per second, square foot, ?F 

local heat-transfer coefficient defined by equation ( 6 6 ) ,  Btu per 
second, square foot, OF 

average heat--transfer coefficient, Btu per second, square foot, ?E' 

coefficient defined by equation (40), dimensionless 

summation index, dimensionless 

distance along flat plate to point of the stepwise discontinuity of 
the surface tenrperature, feet 

parameter introduced in equation (20), dimensiaess 

summation index, dimensionless 

Nusselt number ( ~ x / x )  , diaensidess 
function defined by equation (34) , dimensionless 
Prandtl number (ycp/X), dimensionless 

local heat-transfer rate per unit area, Btu per second, square foot 

total heat-transfer rate per unit width, Btu per second, foot 

Reynolds number (uox/v) , dimensionless 
total length of heated portion of plate, feet 

temperature of fluid in the boundary layer, ?E' 

local velocity in the boundary layer parallel to plate, feet per 
second 

free-stream velocity, feet per second 

upper limit of integral defined in equation (48), feet 

local velocity in the boundary layer normal to plate, feet per 
second 

distance from leading edge of flat plate to rear of heated section 
following a surface-temperature discontinuity, feet 
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X 

Y 

Yn 

z 

6 

A 

8 

8' 

x 

IJ. 

V 

P 

7 

e 

0 

W 

P 

S 

distance along plate from leading edge, feet 

distance normal t o  plate surface, feet  

function defined by equation (65) 

temperature r a t i o  defined by equation (38), dimensionless 

thickness of the f l a w  boundary layer, feet  

thickness of the thermal boundary layer, feet  

exact temperature distribution in the boundary layer for a plate 
a t  constant temperahre preceded by an unheated start ing section, 
dimensionless 

approximate temperature d is t r ibu t im in the boundary layer for a 
plate at constant temperature preceded by an unheated s tar t ing 
section, dimensionless 

0 t h e m 1  conductivity of fluid,  B t u  per second, square foot ,  F per 
foot  

absolute viscosity of fluid, puund-eeconds per square foot 

kinematic viscosity of f luid,  square feet  per second 
2 4 

mass density of fluid, poundaeconds per foot 

local shear stress,  p a s  per square foot 

Subscripts 

effective property f o r  turbulent flow 

f re- tream condition 

surface condition 

referring t o  surface of heat-metar plug 

referring t o  surface of surrounding m t e r i a l  
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General Expressions for the Local Heat-Traasfer Rate and 
the Temperature Distribution in the Bounhry Layer 

The method of amilysis in this paper will be to determine an approx- 
imate solution of the boundary-layer energy equation in integral form for 
a stepwise-discontinuous surface temperature, and then to extend this 
solution to apply to an arbitrary surface temperature by employing an 
integral solution similar in ide‘a to that of -1 (reference 4). 

Boundary-layer temperature distribution.- The energy equation for 
the turbulent boundary layer on a flat plate, neglecting viscous ’dissi- 
pation, can be expressed as 

where he, p, and cp are assumed t o  be independent of temperature. 
Suppose an exact solution of this equation exists for the case of a 
plate which is unheated and at the f’ree-stream temperature 
region x SL, and is heated and at the temperature tw in the regim 
x > L. For the region x > L  

to in the 

where 

Because of the linearity in temperature t 
solutions may be added to satisf‘y desired boundary conditions. 
instance, the temperature in the boundary layer on a flat plate which 
is maintained at t 
different from to, for x > L is given by 

of equation (l), various 
For 

different from to, for x S L  and tw2, 
W1’ 
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in the region x > L. 
equation and the sum of the terms satisfies the desired boundary condi- 
tions; thus, the temperature represented by equati& (3) can be con- 
sidered as the formal solutim of the problem. The idea underlying equa- 
tion (3) may be extended to a large number of temperature discontinuities 

Each term'of equatian (3) satisfies the energy 

by 

Equation (5) is restricted to x = &. If n is allowed to increase 
indefinitely, the interval (Lrkl) becomes small asld equation (5) 
may be rewritten in integral form as 

Equation (6) constitutes the general expression for the temperature dis- 
tribution in the boundary layer for an arbitrary surface-temperature dis- 
tributi on. 

Local heat-transfer rate.- The convective heaStransfer rate per 
unit area f r o m  a surface, where h. = Xe, is given by 

In order to introduce 
sion, equation (6) is 

a temperature potential in the heat-transfer expres- 
integrated by parts which yields 
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af te r  use of the boundary conditions of equation (2). 
of heat transfer obtained by differentiating and substituting eqm- 
t im (8) into equation (7) is 

Tile local rate 

When the local heat-transfer coefficient is  defined by 

equation ( 9 )  becomes 

q(x) = h(x,O) [t(O,O)-t,l + Iz at':') h(x,L) dL (11) 
0 

Equation (11) constitutes the general expresbion for the local heat- 
transfer ra te  per unit  area. Rote that h(x,O) represents the heat- 
transfer coefficient on a plate having a constant surface temperature. 
It is  interesting t o  note that the local 'eat-transfer rate per unit  
area is  comprised of the local heat-transfer ra te  an a plate of canstast 
temperature, equal t o  the leading-edge temperdt;llre of the plate, plus 
corrective terms introduced by the variation of the surface temperature. , 

Approximate Solution for  a Stepwise- 
Discontinuous Surface Temperature 

General so1utiun.- The purpose of this section i s  t o  obtain the 
value of h(x,L) t o  be used in  equation (11). Because of the complex- 
i t y  of the problem, an exact solution 8 ,  or indirectly h(x,L), cannot 
be determined a t  present and an approximate approach is  indicated. 
the analysis presented in  reference 1 w i l l  be repeated herein in a more 
general fashion. 

Tbm,  

The equation which w i l l  be solved is  the boundarg--ls;ger 'energy 
equation A 

(12) 
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The method of solving this equation is  t o  transform it t o  an ordinary 
differential  equation in terms of x as the independent variable 
and. A as the dependent variable. The resulting differential  equation 
is  then integrated. 

Suppose the velocity term u i n  the right member of equation (12) 
i s  given by 

where 

These are the well-known 
addition, suppose 

-1/5 1/5=4/5 6 = 0.37 uo V 

relationships (reference 9). In 

even though 6 and A may not be of the same order of magnitude, When 
the velocity and temperature expressed by equations (13) and (15) are 
substituted into the right member of equation’(E),  there i s  obtained 
af te r  simplification 

h 

A 72 
- -  

when A is  less  than 6. It should be noted that for the case of‘a 
constant plate temperature i n  air A equals 1.26. When the integra- 
t ion of equation (12) i s  performed with these limits on the thicknesses 
of the boundary layers it is  found that the results of the heat-transfer 
coeflicient differ  from those of equatian (16) by the order of 0.1 per- 
cent. Therefore, even though A is  greater than 6 f o r  some cases, 
the results of the following analysis are believed t o  be valid over th 
entire plate t o  the order of 0.1 percent for air. 

In order t o  transfcrm equation (16) t o  an ordinary differential  
equation, it i s  necessary t o  express the l e f t  member of equation (16) i n  
terms of the loca l  characteristics of the boundary layer. Many a l tem-  
t ive expressions may be obtained i n  this manner. 
a prescribed variation of the heat-transfer coefficient h i n  terms 
of the distance along the plate 

This avoids imposing 

x, which would mke the problem 
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trivial. To determine which of the alternative solutions is  
correlation of a general solution depending on a single pa 
be made with the data of reference 8. The wlue of the p 
achieves the best correlation of the data and the analysis w i l l  the 
used in  the remainder of the report. 

In order t o  obtain these alternative expressions for  h i n  terms 
of local characteristics, it is  necessary t o  r e s t r i c t  the aaslysis, for 
the moment, t o  the case of a constant surface temperature. 
of a constant surface temperature, the Colbwp analogy between local 
heat-transfer ra te  and skin fr ic t ion (reference 10) i s  

For the case 

The right member of equation (17) is expressed, f’rom 
siderations, as 

Further, it i s  shown in  appendix A that fo r  the case 

(18) 

of a constant sur- 
face temperature the r a t io  of the thickness of the thermal boundary 
layer t o  the flaw boundary layer i s  given by 

-7/12 
= (Pr) 

6 

When equations (l7), (18), and (19) are combined so as t o  express 
i n  terms of Pr, 6, and A, the variables Which appear in  equation (16), 
there results 

h/h. 

The thermal boundary-layer thickuess w a s  introduced into this equation 
by raising both sides of equation (19) t o  the m-th power. Equation (20) 
constitutes a general expression f o r  the local heat-transfer coefficient 
i n  terms of the local boundary-layer characteristics and the Prandtl 
number. Although this equation was derived for heat transfer fram a 
plate a t  a constant surface tenperatme, it w i l l  be assumed t o  apply t o  
the case of a flat plate with the region x < L  unheated and a t  the 
free-stream temperature. 
limits on the possible variation of the parameter m. For instance, 

It is  inter?sting co note that there are 



in equation (20)  when m is less than -1/4 it is found that the 
transfer coefficient increases with an increasing thermal baunda 
thickness. When the parameter m is greater than 9/28, it is 
that the heat-transfer coefficient increases with a decreasing Prandtl 
number. These variations are in contradiction with existing knowledge 
concerning convective heat transfer. The values of the parameter m 
must, therefore, lie in the interval -1/4 < m < 9/28. - -  

When equations (16) and (20) are equated, there results after sim- 
plification 

where 

Equation (21) is of the Bernoulli type which can be integrated to yield 

when the boundary condition A = 0 at x = L is imposed. Equation (23), 
therefore, gives the thermal boundary-layer thickness on a plate which is 
unheated and at the freeatream temperature to for x 5 L and is 
heated and at the temperature t, for x > L. When equation (23) is 
substituted into equation (20) there results 

The coefficient in equation (24) is given by 

32 2m-1 71-28111 

(25 1 39+28m 
(0.37) 3s+281u ( 0  0778 ) 

39+2!8111 c ( m )  = (0.0223) 

I n  the range -1/4 < m < 9/28 the value of C(m) is essentially con- 
stant and. equal to 0.0288. 
m is greater than -1/4 and when x approaches L the effect is to 

It is apparent f r o m  equation (24) that when 
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increase the local heat-transfer coefficient many fold. When L equals 
zero this equation degenerates to the cus.l;ornary heahtransfer expr 
based on the l/?-power laws for velocity and temperature distribut 
(reference 11). 

Correlation with experiment.- To determine which value of m makes 
equation (24) more near1.y coolform to the measurements, comparison is mde 
of this solution with the data of Scesa in reference 8. 
reference 8 were determined in a well-controlled experiment on a flat 
plate oriented parallel to the free-stream velocity. 
of 50 to 70 feet per second were employed. The plate had an unheated 
starting section which was followed by a heated section in which there 
was an additional temperature discontinuity. 
those from heater elements which can be considered guard heaters are 
plotted in figure 1. 
the theoretical line for a plate at a canstant temperature. 

The &ta of 

Free-stream speeds 

A l l  the basic data except 

It is observed that the data lie consistently above 

The temperatures in the heated regian of the plate are defined as 
h, and upstream and dawnstream from the temperature discontinuity, 
and the temperature of the uaheated starting section is 
stream temperature. 
and the distance from the leading edge of the plate to the temperature 
discontinuity in the heated portion of the plate is 
transfer rates per unit area are then given, respectively, by 

to, the free- 
L1, The length of the unheated starting section is 

L2. The local heat- 

for x >  La. The heahtransfer coefficients in this experiment were 
defined in terms of the local temperature difference between the surface 
and the free stream. 
ured in each of these regiuns are given by equation (24) as 

The Nusselt numbers corresponding to those meas- 
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and 
7-l-28111 

-39+28 m 
Nu = (Nu) + 

c1 - (29 

I f  the general solution, equation (24), yields results which conform t o  
experiment, then the experimental Nusselt nuuibers divided by the brack- 
eted quantities should yield experimental Nusselt numbers which corre- 
spond t o  (Nu) These adjusted data are  shown for two values of the 

parameter my m = 0 ,  , and m = 9/28, i n  figures 2 and 3, respectively. 
It should be noted that m = -1/4 corresponds t o  the data of figure 1, 
that is ,  the bracketed quantities are equal t o  unity. The value m = 0 
apparently correlates the data very well. T h i s  corresponds t o  the 
results of reference 1, that is ,  the loca l  heat-transfer coefficient is 
dependent on the thermalboundary-layer thickness and the Prandtl nmber 
and i s  independent of the flow boundary-layer thickness. For m = 0 
equation (24) becomes 

L=O' 

Equation (30)  will be used i n  the reminder of the analysis. 

Average heat-tran'sfer coefficient determined From particular 
solution.- In mssy cases it i s  desirable t o  know the average heat- 
transfer coefficient over a region a t  constant temperatwe preceded by 
an unheated start ing section. 
per unit  width is given by 

The to t a l  heat transferred i n  the region 

The symbol W represents the distance from 
plate t o  the rear of the region considered. 
coefficient over th i s  region is  defined as 

the leading edge of the 
The average heat-trans f er  
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When equations (3O), (31), and (32) are combined there results 

(i) K(W,L) = h(W,O) - 40 (L/W)4’s 
39 1-(L/w) 

where 

(33 1 

Equation (34) was evaluated numerically and the results are shown in 
figure 4. 

The experimental data obtained by Jakob and Dow (reference 6) on 
the average heat transferred from a probe in axial air flow preceded by 
unheated starting sections corresponds, in form, to the results obtained 
from equations (33) and (34). 
that the data obtained from probes should compare identically with 
theory based on a flat plate. 
probe for a constant surface temperature were about 13 percent lower 
than corresponding theoretical or experimental results on a flat plate. 
A s  any theoretical comparison of probes and flat plates indicates that 
the rate of heat transfer from the probe should be the greater, there 
appears to be some unexplained reason for the low values of the data. 
In view of this, no extensive camparison of the data and the results of 
the present analysis are made. 
unheated starting section reveals that c/h(W,O) = 1.37 from the Jakob 
and Daw - results, while the corresponding result f r o m  the present analy- 
sis is h/h(W,O) = 1.43. This comparison is favorable when considera- 
tion is made of the questions expressed previously concerning the c o w  
parison of results from probes and flat plates. 

It cannot be assumed tacitly, however, 

In particular, the data obtained on the 

A single comparison for the case of an 

Particular solution applied to general single surface-temperature 
discontinuity.- When the region of the ylate preceding the temperature 
discontinuity is at a temperature hl other than the free-stream te- 
perature, the local and average heat-transfer coefficients in the region 
L< x <  - W at a temperature are given by 
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For certain applications i n  a smll region 
know the r a t io  of the average heat-transfer coefficient t o  the local 
heatstransfer coefficient which would prevail at the center of the region 
i f  the plate were at  a constant temperature. 

dividing equation (36) by h 

(W-L) it is interesting t o  
I 

T h i s  ra t io  is obtained by 

where F(L/W) and G ( L / W )  were evaluated numerically. If 

equation (37) may be rewritten as 

where 

The numerical values of F(L/W) and H ( L / W )  a re  plotted i n  figure 5. 

Extension of Approximate Solution t o  the Problem 
of an Arbitrary Surface Temperature 

Boundary-layer temperature distribution.- The approximte temper- 
ature distribution determined from equations (15) and (23) w i t h  m = 0 
i s  
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#7 
8' = 

312/280 273/280 39/280 
-L X 

where 

(42) 
1/35 7 / 3 5  1/12 B = 1.15 u0 Pr 

At the outer edge of the boundary layer 
therefore, equaticm (41) is  valid only in  the region 

8' becomes equal t o  unity; 

312/280 273/280 
- L  X (43 1 

For values of y greater than given by the inequality (43) 

For the range of y indicated by the inequality (43) 

1/7 39/280 L-1/40 a€)* - B Y - - -  

For greater y 

(45) 

WKen equations (41), (45), and (46) are substituted into equation (6)  
there results 
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where u = (x273/280 - B39/4 39/28 Y 
where u = (x273/280 - B39/4 Y 39/28 

347 4/35 When By = x it is apparent from equation (48) that u = 0 ,  and 
consequently From equation (47) 
that the left member of equation (47) equals the prescribed surface tem- 
perature at y = 0. 
satism the boundary conditions at 

t(x,y) = to. It is not obvious, however, 

It is shown in appendix B that equation (47) does 
y = 0. 

Local heat-transfer date.- The general expression for the local 
heat-transfer rate is obtained by substituting the local heat-transfer 
coefficient given by equation (30 )  into equation (11) 

X 39/40 -7/39 

t(0,O) - to + f [l -($) ] a] (49) 
0 

For an arbitrary surface-temperature distribution it is necessary 
to evaluate the integrals in equations (47) and (49) numerically. 
is, however, a type of surface distribution for which the local heat- 
transfer rate can be determined easily by analytical treatment. T h i s  
will be shown in the next section. 

There 

Surface-temperature histribution represented by power series.- Let 
the surface temperature be represented by 

t(x,O) - to = 1 p+n 0 

n 
(50 

where n is not necessarily a.n integer. When equation (50 )  is differ- 
entiated with respect to x there results 

T h e  substitution of equation (51) at x = I, into equation (49) yields 

T h i s  equation m y  be rewritten as 
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99/40 
Letting u = (L/x) 
equation (53) so  that  the equation reads 

allows transformation of the integral terms of 

The integral terms of this equation are Eulerian integrals of the first 
kind (reference E), the values of which are given by the B e t a  f’unction 
which may be expressed i n  Gamma functions as 

0 

da = (:+E) ( 5 5 )  

where n i s  greater than or equal t o  zero. The values of the G a m  
functions may be obtained from tables i n  reference 13. In view of‘ equa- 
t ion ( 5 5 ) ,  equation (54) becomes 

When the recursion equation 

i s  used, equation (56) m y  be rewritten as 

It is  apparent t h a t  once the type of surface-teqerature distribution 
i s  specified, that is, values of specified, the distribution of 
the local heat-transfer ra te  per unit area can be determined directly 



froni equation (58). The t o t a l  ra te  of heat transfer per t width Q * 

is  obtained by integrating equation (58) from x = 0 t o  x = s 

- 
The term 
of a constant surface temperature determined fromthe expression 

h(s,O) is the average heat-trassfer coefficient for the case 

For convenience, equations (5l) ,  (52), (58), and (59) are put i n  
the dimensionless f o r m  

In  these equations 
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The term yn is plotted as a function of n in figure 6. If the heat- 
transfer coefficient for the case of a variable surface temperature is 
defined in term of the local temperature difference 

then 

n 
Inspection of the right member of equation (67) reveals several inter- 
esting facts. 
of zero, the numerator will be finite in all but a very exceptions1 case; 
thus h*/h(x,O) will be infinite at this point. For another case the 
numerator may be zero locally while the denominator will probably be 
finite; thus h*/h(x,O) will be zero at this point. It is seen, there- 
fore, that h*/h(x,O) 
problem considered. 

For a problem in which the denominator has a local value 

can attain any numerical value, depending on the 

In summary, it is noted from equations (61), (62), and (63) that the 
values of the coefficient An may be determined by a prescribed distri- 
bution of surface temperature, a prescribed distribution of the surface 

. temperature gradient, or a prescribed distribution of the local heat- 
transfer rate per unit area. Once the coefficients An are evaluated 
from the prescribed quantity the other two quantities, together with the 
total heat-transfer rate, can be determined directly. 

Plug-Type Heat Meter 

convective heat-transfer rates at a sureace are often measured con- 
veniently by determining the heat-transX‘er rate to or f r o m  a plug which 
is themlly isolated fromthe surrounding material. The plug can be 
used as a steady-state device in which heat is generated electrically 
and the temperature of the plug is maintained constant. The usual prac- 
tice, however, is to use the plug as a transient device by measuring the 
temperature-time history of the plug. The local heat-transfer rate 
through the surface of the plug is represented by the product of the 
rate of change of temperature and the thermal capacity of the plug. 
Regardless of the convenience of using such a devirce, the present 
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analysis indicates that the measurements are subject to certain inherent 
errors in addition to those which may arise from imperfect thermal iso- 
lation. 

It is not possible to design a simple plug-type heat meter which 
will always maintain a temperature identical to the temperature of the 
Surrounding material. If an extremely thin insulating material is used 
bet’ween the plug and the surrounding nnsterial, a surface-temperature dis- 
continuity will occur at the seam of the plug and the surrounding mate- 
rial. If the instantaneous surface temperature of the plug is defined 
as tp, 
leading edge of the plate is denoted 
(36) through (40) are applicable to this problem, where 

while the surface temperature of the surrounding material to the 
t,, it is apparent that equations 

tp = h2 and 
ts = twl .  

It is desirable to know how well a plug-type heat meter measures 
the local heat-transfer coefficient which would exist at the position of 
the center of the plug if the plate were at a constant temperature. 
Equation (37) is directly.applicable to this problem. For example, sup- 
pose the instantaneous temperatures of a heat-raeter plug, the surrounding 
material, and the free stream are 125O F, looo F, and 200’ F, respeo 
tively. L = 24 inches and W = 23 inches. 
It is found from equation (38) that z = 4.33, and L/W = 0.96. From 
equation (39) and figure 5 

The dimensions of the plug are 

Thus, the plug-type heat meter measures a heat-transfer coefficient which 
is only 62 percent of the local heat-transfer coefficient which would 
have existed at the position of the center ofthe plug had the plate been 
at a constant surface temperature. 

Although this example is arbitrary, the conditions are by no means 
implausible. 
surface-temperature conditions can result in negative values of, 

It should be noted from equation (39) that more severe 
- 
h(WyL) 

h(W+L/2,0)’ 
which means that measurement of/ heat transfer by a plug 

would be in a direction opposite to that which would normally prevail on 
a plate having a constant surface temperature. 
that extreme caution should be exercised in the interpretation of the 
data obtained by plug-type heat meters. 

These results idlicate 
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Constant Heat-Transfer R a t e  

Suppose it i s  desired t o  maintain a surface-teqerature distribu- 
tion such that the local heat-transfer ra te  per unit area is  constant 
along a plate ,  
inversely proportional t o  the l/5-power of 
fore be written as 

From equation (30) it can be seen that h(x,O) i s  
Equation (63) can there- x. 

It i s  apparent that t o  maintain q constant, a must have the value 
1/5 only. Equation (69 )  becomes 

Theref ore, 

The required surface-temperature variation as given by equation (61) i s  

Further 

* 
h 

h(x,O) 
= Y = 1.06 

(31'5 

(73) 

This latter equation indicates, from the values of figure 6, that the 
local heat-trassfer coefficient on a plate baving a constant heat- 
transfer ra te  differs from that on a plate a t  a constant temperature 
by only 6 percent. 
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Surface Temperature Represented by Polynomial 

23 

Suppose the temperature distribution on a flat plate is given by 

8 t(x,o) = 1.5 + 0 . 5 ( $ )  
t0 

(74) 

Then in equation (61), n = 0 and n = 1, and A, = 0.5 and A 1  = d.5. 
From equation (63) and figure 6, the l oca l  heat-transfer rates are given 
bY 

The ratio of the local heat-transfer coefficient to the heat-transfer 
coefficient which would exist if the plate were at a constant surface 
temperature is 

h* - 0.5 + 0.612(~/~) - 
h(x,O) 0.5 + O.?(X/S) 

The values of the members of equations (74) and (75) are plotted in 
figure 7. It can be observed that although the temperature variation 
along the plate increased the over-all temperature difference between 
the plate and the free stream by 100 percent, the local heat-transfer 
coefficient differs fromthat on a constant-temperature plate by a mxi- 
mum of about 11 percent. 

CONCLUSIONS 

The conclusions of this report are subject to certain limitatians 
inherent in the assumptions of the analysis. The following asswqtions 
have been used: 

I 

1. A l l  physical properties of the fluid are constant. 

2. 
negligible. 

3. 

Frictional dissipation of energy within the boundary layer is 

The velocity distribution in the boundary layer is of the 
l/7-power form. 
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4. The teqerature distribution in the boundary layer is of the 
l/T-power form even when ‘the thermal boundary-layer thickness differs 
considerably from the flap boundary-layer thickness. 

5. The local heat-transfer coefficient determined on a plate having 
a constant surface temperature applies to a plate baving a variable sur- 
face temperature when it is expressed by an equation based on the local 
flow and thermalboundary-layer thicknesses instead of the distance along 
the plate. 

Althaughthe analysis based on these assumptions is correlated with 
experimental data, this is not a verification of the individual assump- 
tions of the analysis, but rather, is a justification of the use of the 
end results. 

The foregoing analysis, together with the examples cited, has indi- 
cated that a variation in the surface temperature with distance along a 
flat plate influences the local convective heat transfer to an extent 
which depends on the type of variation. In general, a sudden sqrface- 
temperature jump, or discontinuity, produces extremely large increases 
or decreases in the convective heat transfer directly downstream of the 
position of the discontinuity. 
urements by a heat meter of the plug type can, in most instances, deviate 
considerably from the heat transfer which would normally exist at the 
locatiq of the instrument. 
was shown, in general, to have a smsller effect on the convective heat 
transfer than a sudden temperature discmtinuity. For instame, it was 
shown that the local heat-transfer coefficient on a plate bavlng a con- 
s tant heat-transfer rate along the surface, with the necessary 1/5-power 
variation of the surface temperature, differs from that on a plate with 
a constant surface temperature by only 6 percent. For the case of con- 
tinuously varying surface temperatures, large effects on the local heat- 
transfer coefficient are expected only where the surface temperature 
approaches tbat of the free streamat a point other than the leading 
edge of the plate. 

From this it can be concluded that meas- 

A continuously variable surface temperature 

Ames Aer omut i cal Iaborat or y , 
Bational Advisory Committee for Aeronautics, 

Moffett Field, Calif,, Feb. 9 ,  1951. 



4 NACA TN 2345 25 

RATIO OF BOllIlDARY-Um T'RICIQESSES OX PLATE 
WITH C O % S m  SURFACE TEMEERATURE , 

If the 1/7-power-law velocity distribution 

is substituted into the von E&n& momentum integral for EL flat plate 

there results 
6 

(A3 1 
0 

P d x  

When the indicated operations are performed, there results 

Similarly, if the l/T-power temperature distribution 

and equation (Al) are inserted into the integral form of the energy 
equation 

there results 

(A5 1 
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when tw is constant and it is postulated that 6 is greater than A. 

For a constant surface temperature the Colburn modification of the , 
Reynolds analogy is expressed as 

2/3 q- 
(Pr) = - h .  

PCp uo W02 

When equations (A41 and (A7) are substituted into equation (A8) ,  there 
is obtained 

Therefore 

2/3 f 1 7  - = 6 + c 
$/7 

(Pr) 

For the case of a constant surface temperature, both the thiclmess of 
the t h e m 1  and flow boundary layers are zero at the leading edge of the 
plate; thus, C equals zero in equation (A10) and 

A -7/12 - = (Pr) 
6 



AFPENDIx B 

VERIFICATION OF BOIJRDABY CONDITION 

Equation (47) in the text  i s  

where 

To simplify the integration l e t  

(B3 ) c p =  (x 312/2ao - L2i-3/2ao x3s/2ao) yn 

When the terms of equation (B4) are  transposed 

From equation (B3) it can be found that 

99/40 -39/280 4 L = ( x  - x  

With this transformation of the variable, equation ( B l )  becomes 



When n = -39/28, equation (B7) reduces t o  

By”’ to - 
4/35 

t h y )  = 
X 

40/39 

) arp (B8) 

39/4 [ (x39/40_x39/280 Y 39/28 Cp 
4B s” 

312/280 (P43/39 

Y39/28 

39 
X 

At y = 0, equation (B8) becomes 

t (x,o )dv 
B 

t(x,O) = - 5 J - 
39 m v43c39 

On integration, equation (Bg) becomes 

which reduces t o  the identity 

t(x,O) = t(x,O) 
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